我们报告了激进的量化策略,这些策略极大地加速了复发性神经网络传感器(RNN-T)的推理。我们使用4位整数表示进行权重和激活,并应用量化意识训练(QAT)来重新训练完整模型(声学编码器和语言模型)并实现近乎ISO的准确性。我们表明,根据网络本地属性量身定制的自定义量化方案对于在限制QAT的计算开销的同时,至关重要。密度比语言模型融合已显示出在RNN-T工作负载上的准确性提高,但严重增加了推理的计算成本。我们表明,我们的量化策略可以使用大型宽度宽度进行假设搜索,同时实现与流媒体兼容的运行时间,并且与完整的Precision模型相比,我们可以实现与流相兼容的运行时间和7.6 $ \ times $的完整模型压缩比。通过硬件仿真,我们估计端到端量化的RNN-T(包括LM Fusion)的3.4 $ \ times $从fp16到INT4,导致实时因子(RTF)为0.06。在NIST HUB5 2000,HUB5 2001和RT-03测试集中,我们保留了与LM Fusion相关的大部分收益,将平均WER提高了$ 1.5%。
translated by 谷歌翻译
Training of large-scale deep neural networks is often constrained by the available computational resources. We study the effect of limited precision data representation and computation on neural network training. Within the context of low-precision fixed-point computations, we observe the rounding scheme to play a crucial role in determining the network's behavior during training. Our results show that deep networks can be trained using only 16-bit wide fixed-point number representation when using stochastic rounding, and incur little to no degradation in the classification accuracy. We also demonstrate an energy-efficient hardware accelerator that implements low-precision fixed-point arithmetic with stochastic rounding.
translated by 谷歌翻译
Language models have been shown to perform better with an increase in scale on a wide variety of tasks via the in-context learning paradigm. In this paper, we investigate the hypothesis that the ability of a large language model to in-context learn-perform a task is not uniformly spread across all of its underlying components. Using a 66 billion parameter language model (OPT-66B) across a diverse set of 14 downstream tasks, we find this is indeed the case: $\sim$70% of attention heads and $\sim$20% of feed forward networks can be removed with minimal decline in task performance. We find substantial overlap in the set of attention heads (un)important for in-context learning across tasks and number of in-context examples. We also address our hypothesis through a task-agnostic lens, finding that a small set of attention heads in OPT-66B score highly on their ability to perform primitive induction operations associated with in-context learning, namely, prefix matching and copying. These induction heads overlap with task-specific important heads, suggesting that induction heads are among the heads capable of more sophisticated behaviors associated with in-context learning. Overall, our study provides several insights that indicate large language models may be under-trained to perform in-context learning and opens up questions on how to pre-train language models to more effectively perform in-context learning.
translated by 谷歌翻译
Conditional diffusion probabilistic models can model the distribution of natural images and can generate diverse and realistic samples based on given conditions. However, oftentimes their results can be unrealistic with observable color shifts and textures. We believe that this issue results from the divergence between the probabilistic distribution learned by the model and the distribution of natural images. The delicate conditions gradually enlarge the divergence during each sampling timestep. To address this issue, we introduce a new method that brings the predicted samples to the training data manifold using a pretrained unconditional diffusion model. The unconditional model acts as a regularizer and reduces the divergence introduced by the conditional model at each sampling step. We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks. The improvements obtained by our method suggest that the priors can be incorporated as a general plugin for improving conditional diffusion models.
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
Generating photos satisfying multiple constraints find broad utility in the content creation industry. A key hurdle to accomplishing this task is the need for paired data consisting of all modalities (i.e., constraints) and their corresponding output. Moreover, existing methods need retraining using paired data across all modalities to introduce a new condition. This paper proposes a solution to this problem based on denoising diffusion probabilistic models (DDPMs). Our motivation for choosing diffusion models over other generative models comes from the flexible internal structure of diffusion models. Since each sampling step in the DDPM follows a Gaussian distribution, we show that there exists a closed-form solution for generating an image given various constraints. Our method can unite multiple diffusion models trained on multiple sub-tasks and conquer the combined task through our proposed sampling strategy. We also introduce a novel reliability parameter that allows using different off-the-shelf diffusion models trained across various datasets during sampling time alone to guide it to the desired outcome satisfying multiple constraints. We perform experiments on various standard multimodal tasks to demonstrate the effectiveness of our approach. More details can be found in https://nithin-gk.github.io/projectpages/Multidiff/index.html
translated by 谷歌翻译
We present pyRDDLGym, a Python framework for auto-generation of OpenAI Gym environments from RDDL declerative description. The discrete time step evolution of variables in RDDL is described by conditional probability functions, which fits naturally into the Gym step scheme. Furthermore, since RDDL is a lifted description, the modification and scaling up of environments to support multiple entities and different configurations becomes trivial rather than a tedious process prone to errors. We hope that pyRDDLGym will serve as a new wind in the reinforcement learning community by enabling easy and rapid development of benchmarks due to the unique expressive power of RDDL. By providing explicit access to the model in the RDDL description, pyRDDLGym can also facilitate research on hybrid approaches for learning from interaction while leveraging model knowledge. We present the design and built-in examples of pyRDDLGym, and the additions made to the RDDL language that were incorporated into the framework.
translated by 谷歌翻译
We consider the problem of multi-agent navigation and collision avoidance when observations are limited to the local neighborhood of each agent. We propose InforMARL, a novel architecture for multi-agent reinforcement learning (MARL) which uses local information intelligently to compute paths for all the agents in a decentralized manner. Specifically, InforMARL aggregates information about the local neighborhood of agents for both the actor and the critic using a graph neural network and can be used in conjunction with any standard MARL algorithm. We show that (1) in training, InforMARL has better sample efficiency and performance than baseline approaches, despite using less information, and (2) in testing, it scales well to environments with arbitrary numbers of agents and obstacles.
translated by 谷歌翻译
大型语言模型(LLM)从人类的指示中解开了任务计划的新功能。但是,事先尝试将LLMS应用于现实世界的机器人任务受到周围场景中缺乏接地的限制。在本文中,我们开发了NLMAP,这是一个开放式摄影和可查询场景表示,以解决此问题。 NLMAP是一个框架,可以将上下文信息收集到LLM计划者中,从而在生成上下文条件条件计划之前,可以在场景中查看和查询可用的对象。 NLMAP首先使用视觉语言模型(VLM)建立自然语言可查询场景表示。基于LLM的对象建议模块解析指令并提出涉及的对象,以查询场景表示以获取对象可用性和位置。然后,LLM规划师计划提供有关场景的此类信息。 NLMAP允许机器人在没有固定的对象列表或可执行选项的情况下操作,从而使真实的机器人操作无法通过以前的方法实现。项目网站:https://nlmap-saycan.github.io
translated by 谷歌翻译
近年来,基于神经网络的深度恢复方法已实现了最先进的方法,从而导致了各种图像过度的任务。但是,基于深度学习的Deblurring网络的一个主要缺点是,训练需要大量模糊清洁图像对才能实现良好的性能。此外,当测试过程中的模糊图像和模糊内核与训练过程中使用的图像和模糊内核时,深层网络通常无法表现良好。这主要是因为网络参数在培训数据上过度拟合。在这项工作中,我们提出了一种解决这些问题的方法。我们将非盲图像脱毛问题视为一个脱氧问题。为此,我们在一对模糊图像上使用相应的模糊内核进行Wiener过滤。这导致一对具有彩色噪声的图像。因此,造成造成的问题被转化为一个降解问题。然后,我们在不使用明确的清洁目标图像的情况下解决了降解问题。进行了广泛的实验,以表明我们的方法取得了与最先进的非盲人脱毛作品相提并论的结果。
translated by 谷歌翻译